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Abstract 

Introduction: The novel coronavirus (CoV) disease 2019 (COVID-19) is a viral infection that 

causes Severe Acute Respiratory Syndrome. It is believed that early reports of COVID-19 cases 

were noticed in December 2019 and soon after became a global public health emergency. It is 

advised that COVID-19 transmits through human to human contact and in most cases it remains 

asymptomatic. Several approaches are being utilized to control the outbreak of this fatal viral 

disease. microRNAs (miRNAs) are known signature therapeutic tool for the viral diseases; they 

are small non-coding RNAs that target the mRNAs to inhibit their post-transcriptional 

expression, therefore, impeding their functions, thus can serve as watchdogs or micromanagers 

in the cells.  

Areas covered: This review work delineated COVID-19 and its association with SARS-CoV 

and MERS-CoV, the possible role of miRNAs in the pathogenesis of COVID-19, and therapeutic 

potential of microRNAs and their effective delivery to treat COVID 19.  

Expert opinion: This review highlighted the importance of various miRNAs and their potential 

role in fighting with this pandemic as therapeutic molecules utilizing nanotechnology. 

 

Keywords: SARS-CoV-2, COVID-19, miRNA, nanotherapeutics, nanoparticles 
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Article highlights 

• The novel coronavirus disease 2019 (COVID-19) is caused due to SARS-CoV-2 

infection which has been declared a pandemic. 

• The importance of miRNAs in the pathogenesis of this viral disease is summarized.  

• Currently, there is no approved treatment or vaccine for COVID-19 and miRNAs can 

become a potential therapeutic tool. 

• This work delineates the overall idea of developing nanoformulation(s) of the SARS-

CoV-2 related miRNAs.  

• Multifaceted targeting approaches are required for miRNA nanotherapy for effectively 

tackling SARS-CoV-2. 

• The nanoparticles-based miRNAs could also be used in the form of nano-vaccines for the 

prevention from SARS-CoV-2. 
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Coronaviruses also replicate in the host cytoplasm, like other RNA viruses [11]. Recently, 

published reports suggested that SARS-CoV-2 was originally transmitted from bats [12,13] and 

the whole genome of human SARS-CoV-2 was found to be almost 96% identical to the 

coronavirus of a bat [9]. Bats were reportedly acclaimed as the natural reservoir for other 

coronaviruses, such as, SARS-CoV, MERS-CoV, HCoV-NL63, and HCoV-229E [14-16].  

Most COVID-19 patients were reported to have some other underlying co-morbidity factors, 

such as, diabetes, respiratory health condition, cardiovascular condition, hypertension, and 

cancer [3]. According to many reports, the median age of COVID-19 confirmed cases/patients 

was around 60 years and older, and more than half the population was male. The average 

incubation time for the virus is ~ 5 days [3,17]. 

 

The most favorable route attributing to the transmission of this SARS-CoV-2  virus spread is 

human to human contact [18,19] (Figure 2A). Upon the transmission, viral particles bind to the 

host cell receptor and then get fused with the cell membrane. Being a respiratory infection, 

primarily, SARS-CoV-2 was evident to target the airway and lung epithelial cells. Growing 

evidences argue that receptor binding domain of SARS-CoV-2 spike protein gets activated after 

its cleavage by Transmembrane Serine Protease 2 (TMPRSS2) and binds to the Angiotensin 

Converting Enzyme 2 (ACE2) receptor of the host cells (Figure 2A) [20-22]. Therefore, we 

hypothesized that identification and successful delivery of certain microRNAs that are involved 

in blocking the binding or activation with ACE2 or TMPRSS2 is highly rewarding for the 

prevention and management of COVID-19 (Figure 2B). More detailed information on these 

aspects are provided in the forthcoming sections. 
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Moreover, the receptor binding domain sequence of SARS-CoV-2 is similar to that of SARS-

CoV [11]. SARS was a global epidemic exploded in 2003 [26] whereas MERS was the second 

known coronavirus pandemic and was first reported in 2012 in Saudi Arabia [26]. Reports 

claimed that these viruses have emerged from bats and camels and transmitted to humans 

[27,28]. Spread of both viral diseases (SARS and MERS) was worldwide as early clinical 

features were not clear. MERS was less severe compared to SARS as it did not show global 

transmission quickly, not even after two years of its first emergence. Previous measures taken to 

combat SARS and MERS should be reconsidered to better tackle this newer global pandemic, 

including, maintaining social distancing, proper hygiene, self-quarantine (if any symptoms are 

present), and isolation (of confirmed positive individuals) [4]. 

 

3. miRNAs in SARS, MERS and COVID-19 viral diseases 

microRNAs (miRNAs) are about 18-25 nucleotides long, small non-coding RNAs that regulate 

the target mRNAs post-transcriptionally, thus, serve as watchdogs in the cells [29,30]. In the past 

recent years, many reports have identified miRNAs as signature biomarkers that play a critical 

role in various cellular processes, such as, cell proliferation, apoptosis, differentiation, and 

embryonic development [31]. Dysregulation in the expression status of miRNAs has been 

associated with several diseases including viral diseases, cancer [31,32], diabetes, schizophrenia 

[33,34], psoriasis [35], and cardiovascular disease [36].  

 

Growing evidences have suggested a vital role of miRNAs in the pathogenesis and therapeutics 

of many viral diseases (Table 1), such as Dengue, Influenza, Human Immunodeficiency Virus 1 

(HIV-1), Herpes Simplex Viruses (HSV), and Hepatitis C (HCV).A study has reported that 

miRNA 122 possesses strong anti-HCV characteristics [37]. Based on a bioinformatics study, a 

group 13 cellular human miRNAs regulate the MERS-CoV. Out of these, only 3 human 

miRNAs, miRNA 628-5p, miRNA 18a-3p, and miRNA 332-3p have the known biological 

functions. Remaining 10 human miRNAs (miRNA 6804-3p, miRNA 4289, miRNA 208a-3p, 

miRNA 510-3p, miRNA 329- 3p, miRNA 548ax, miRNA 3934-5p, miRNA 4474-5p, miRNA 

7974, and miRNA 6865-5p) did not have any known role/functions in humans or animals. 

miRNA 628 and miRNA 332 exhibited remarkable identity with the MERS-CoV viral genome. 
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As of the previously known functions, miRNA 628 has been reported to play tumor suppressive 

role in glioblastoma where it is crucial for cell proliferation and cell cycle progression [38]. 

miRNA 18a was also found to critically regulate the genes involved in cellular proliferation, 

adhesion, and differentiation [39]. On the other hand, miRNA 332 was suggested to be 

overexpressed in prion disease and crucial for late stage of the disease [40]. Considering the 

resemblance between MERS and COVID-19, these miRNAs could also be potential targets for 

COVID-19 therapeutics.  

 

Table 1: Role of different miRNAs in viral diseases.  

Virus miRNA Function Reference

James Canyon Virus (JCV) miRNA J1 
(Viral) 

Downregulates early gene 
expression 

[41]  

Human Papilomavirus 
(HPV) 

miRNA 203 
(Cellular) 

Downregulates expression of 
p63 

[42]  

SARS miRNA 17 
miRNA 214 

(Cellular) 

Facilitates gene replication 
Helps in immune invasion 

[43] 

Herpes Simplex Virus 
(HSV) 

miRNA LAT 
(Viral) 

Anti-apoptotic role [44]  

Hepatitis C Virus (HCV) miRNA 122 
(Cellular) 

Enhances viral replication [45] 

Human Immunodeficiency 
Virus (HIV) 

miRNA N367 
(Viral) 

Reduces LTR transcription [46] 

Human Cytomegalovirus 
(HCMV) 

miRNA UL23 
(Viral) 

Immunomodulation [47] 

Simian Virus 40 (SV 40) miRNA S1 
(Viral) 

Downregulates early gene 
expression 

[48] 

Influenza miRNA 507 
(Cellular) 

Helps adapting influenza AI 
(Avian Influenza) to 

mammalian cells/species via 
targeting PB2 

[49] 

BK Virus (BKV) miRNA B1 
(Viral) 

Downregulates early gene 
expression 

[50] 

Similarly, many studies have been conducted with SARS regarding its association with miRNAs. 

Qin et al., have utilized miRNA (Small non-coding RNA) based therapy to reduce the spike gene 

of SARS-CoV [51]. This strategy can also be utilized for SARS-CoV-2 inhibition as the spike 

protein of this virus is involved in the binding and fusion to the host cells. 
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Studies even suggested that some plant miRNAs are also identical with human miRNAs as they 

share similar genomic sequences [52]. One plant-based miRNA, pab-miRNA 11409d found in 

gymnosperm Picea abies (L), showed sequence similarity with 3’ of SARS-CoV-2 spike gene 

(NCBI Accession number LC528233.1), suggesting that it may be implemented to cure the 

COVID-19 [53]. Anti-viral miRNAs present in the host cells are also of great significance as 

they act as a crucial regulator of immune response via targeting viral gene replication and 

expression during the viral infections. A geographical (USA, Wuhan, Italy, India and Nepal) 

genomic study on COVID-19 reported 6 anti-viral host cell miRNAs specific to SARS-CoV-2 

such as hsa-let 7a (targets Non Structural Protein), hsa-miRNA 101 (targets Non Structural 

Protein), hsa-miRNA 126 (targets Nucleocapsid), hsa-miRNA 23b (targets Spike protein), hsa-

miRNA 378 (targets Nucleocapsid), and hsa-miRNA 98 (targets Spike protein) [54]. 

 

Patients suffering with diabetic and cardiac diseases who are on ACE2 enhancement drugs 

(inhibitors and blockers that increase the expression of ACE2 receptor), are more prone to be 

infected with SARS-CoV-2 [55], and ACE2 was found to be regulated by hsa-miRNA 27b 

[54,56], therefore, these findings further notify of an important correlation between hsa-miRNA 

27b and SARS-CoV-2. It is also important to note that miRNA 27b  is associated with Indian 

origin variant genome of SARS-CoV-2 [54]. Viral protein replication/synthesis occurs in the 

host cell and miRNAs inhibit the target mRNA translation into the protein, therefore, miRNAs 

can be utilized as a therapeutic tool for viral diseases [57-59]. 

 

Considering the importance of miRNAs, it becomes imperative to identify the miRNAs 

regulating the pathogenesis of COVID-19 and/or other coronavirus diseases. Another method to 

control COVID-19 and/or other two coronavirus diseases is, to utilize completely 

complementary miRNAs (cc miRNA) that can target the viral gene and inhibit its post-

transcriptional expression. The cc miRNAs (modified to 25-27 nucleotides), namely, 

ID02510.3p-miRNA, ID00448.3p-miRNA, miRNA 3154, miRNA 7114-5p, miRNA 5197-3p, 

ID02750.3p-miRNA, and ID01851.5p-miRNA showed a strong binding with the SARS-CoV-2 

viral genome, suggestively [60].  
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MED 19, respectively. Some signal transducers such as STAT 1 and STAT 5B were also 

reported among the predicted target genes of viral miRNAs. 

 

CHAC1 and RAD9A are two crucial proteins for apoptosis [63] and found to be targeted by two 

SARS-CoV-2 viral miRNAs, namely as, miRNA MD2-5p and miRNA 147-3p [64]. In addition, 

miRNA 66-3p was identified to target the transcription enhancer of TNF-α, a very well-known 

cytokine [64]. TMPRSS2 has been linked to activate the spike protein of SARS-CoV-2, 

therefore, promotes the infection [22]. This activator gene had been predicted to be targeted by 

miRNA 147-3p in the gut. This study further identified two more viral miRNAs as miRNA 198-

3p and miRNA 359-5p that target and enhance the activity of Adenosine Deaminases Acting on 

RNA (ADAR) and non-muscle myosin heavy chain 9 (MYH9), respectively [64]. 

 

A PubMed search with the keywords “miRNA and SARS-CoV-2” 

(https://pubmed.ncbi.nlm.nih.gov/?term=miRNA+and+SARS-CoV-2) indicated about 20 peer-

reviewed studies (data accessed on August 3, 2020).  Out of these, we discussed the articles 

which are highly important and provide a new direction to the field of miRNAs in COVID-19 

research. Guterres et al., [65] screened 60 SARS-CoV-2 genomes for the possible identification 

of seed sponges which may be involved in binding with the human miRNA, thus, preventing the 

interaction with their native targets. This study extracted a perfect match with 11 nucleotides 

encompassing the seed region. Additionally, this study demonstrated that there are 34 and 45 

miRNAs for positive-sense and negative-sense viral RNA, respectively, that can strongly bind to 

certain key SARS-CoV-2 genes. Through the Kyoto Encyclopedia of Genes and Genomes 

pathway analysis prediction study [66], 7 important miRNAs (miRNAs 8066, 5197, 3611, 3934-

3p, 1307-3p, 3691-3p and 1468-5p) were identified that are perfectly linked with host responses 

and virus pathogenicity. Another study of a sequence analysis of SARS-CoV-2 genome has 

identified that out of 10, 3 targets have been lost. This includes miR-197-5p [67].  

 

Considering the significance of ACE2 and TMPRSS2 in SARS-CoV-2 infection, we also 

performed a TargetScan (http://www.targetscan.org/vert_72/) search for the miRNAs that could 

target these two receptors, and the analyses revealed a list of miRNAs such as, hsa-miRNA 

200b-3p, hsa-miRNA 200c-3p and miRNA 429 for ACE2, and hsa-let 7c-5p, hsa-miRNA 98-5p, 
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hsa-let 7f-5p, hsa-let 7a-5p, hsa-let 7g-5p, hsa-let 7b-5p, hsa-miRNA 4458, hsa-let 7e-5p, hsa-let 

7i-5p, hsa-let 7d-5p and hsa-miRNA 4500 for TMPRSS2. According to this search result, these 

miRNAs appear to directly target ACE2 and TMPRSS2, hence, could be utilized as potent 

therapeutic molecules to regulate key proteins that are required for viral contraction and its entry 

to the host airway/lung epithelial cells. 

 

4. Therapeutic potential of miRNAs for COVID-19 

Viruses cannot replicate on their own, thus, they utilize the host cell environment for their 

replication. One of the many strategies that viruses use, is modifying the host cell miRNA for 

their favor [49]. SARS-CoV viral infection in Bronchioalveolar Stem Cells (BASCs) was 

reported to modulate the differentiation of BASCs for its successful replication as it cannot 

replicate in the well differentiated cells [43]. In the host cell, SARS-CoV modulated the 

expression of various miRNAs such as miRNA 17, miRNA 574, miRNA 214, and moreover the 

spike and nucleocapsid proteins of this virus inhibited the expression of miRNA 98 and miRNA 

223, respectively, to control the cellular differentiation in BASCs [43].  

 

On the other hand, some host cell miRNAs modulate the target viral gene expression in the 

immune response as to defend the cells [68]. Signifying to the relationship between miRNAs and 

viral infection, miRNAs appear to be potential biomarkers and therapeutic targets in viral 

diseases. Trobaugh and Klimstra [69] have delineated the various aspects of the interaction 

between RNA viruses and cellular miRNAs, including factors influencing miRNA-RNA virus 

interaction, miRNA interactions with the RNA viral genome, miRNA-mediated stabilization of 

RNA virus genomes, modulation of host miRNA levels during viral infections, miRNA-

mediated changes in protein expression that alter host responses in infection and promote viral 

replication, and maintenance of miRNA-binding sites in the RNA virus genome. This review 

discusses, how “miRNAs can affect RNA virus replication and pathogenesis through direct 

binding to the RNA virus genome or through virus-mediated changes in the host transcriptome”. 

Additionally, this study documents the direct and indirect interactions between cellular miRNAs 

and RNA viruses. 

Currently, in the lack of COVID-19 treatments and vaccines which will take time to be 

developed, it is important to note that discovering miRNA-based therapies can be an attractive 
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option for controlling the replication of the virus. Host cell miRNAs that were predicted to target 

SARS-CoV-2 viral genes, warrant further research in cell lines and animal models. ACE2 and 

TMPRSS2 are two important receptors that were reported to facilitate the activation and binding 

of SARS-CoV-2, and its entry to the host cell. miRNAs that are associated with these two 

receptors could act as a therapeutic modality for this virus. To illustrate, host miRNA 27b 

regulates ACE2 and viral miRNA 147-3p targets TMPRSS2, if these therapeutic miRNAs can be 

delivered to the cells, attachment of SARS-CoV-2 spike protein and these receptors can be 

inhibited, therefore, contraction of viral infection can be mitigated or minimized (Figure 2B). 

Additionally, miRNAs from our TargetScan search seem to be directly targeting these two genes, 

herein, enhanced or restored expression of the listed miRNAs in the host cell could suppress the 

expression/presence of ACE2 and TMPRSS2, which will result in the inhibition of SARS-CoV-2 

viral entry and infection in the host cell. 

 

In the field of medicine, miRNAs have been considered as promising biomarker(s) and novel 

target(s) for therapeutic approaches. miRNAs as therapeutics [70] have extensively been 

reviewed and documented for their key roles and  recent advances in cancer and other diseases 

(pulmonary and cardiac disorders, asthma, pneumonia, cardiac fibrosis, and so on). However, in 

virology, the landscape of miRNAs as diagnostic and interventional medicine is still an 

unexplored area of research. The major issues with miRNA based viral research/therapy are, the 

delivery of miRNAs to the target cells/tissues, poor circulation/half-life (as miRNAs are highly 

unstable), and the toxicity associated with conventional delivery vehicles. Simple chemical 

modification can serve as a medium to improve stability of miRNAs, but it may not provide in 

vivo and clinical translation. On the other hand, various viral vectors (adenoviral, retroviral, and 

lentiviral vectors) have been widely applied to the preclinical and clinical purposes. However, 

their poor miRNA loading efficacy, off-target toxicity, and immunogenicity significantly hamper 

their use. Thus, the development of non-viral delivery vectors is considered to be a suitable 

option for effective delivery of microRNAs [71]. 

 

Nanoparticle based delivery has been reported to tackle these above-mentioned obstacles related 

to miRNA therapeutics [72,73]. Nanotherapeutics are one of the most favorable platforms to 

effectively deliver the miRNAs to the host cells pertaining to their tiny size and low molecular 
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Figure 4. A schematic representation of different nanosystems that could be utilized for 

successful miRNA nanotherapy. 

 

5. Concluding remarks 

World Health Organization has declared the COVID-19, a global pandemic in February 2020, 

which has caused more than 4 million confirmed positive cases and more than quarter million 

deaths globally as of May 8, 2020. COVID-19 has been reported in humans for the first time, 

therefore, development of effective therapies is an unmet clinical need. Many research groups 

have been focusing on understanding the genomic profile of the virus and utilizing the 

repurposed drugs to treat COVID-19. A very few reports, so far, have reported the miRNAs as 

therapeutic molecules for this disease. miRNAs control the post-transcriptional expression of 

target mRNA genes, therefore, have reported to play an important role in the pathogenesis of 

many viral diseases including SARS-CoV and MERS-CoV infections. In this review, we have 

shed the light on various important and previously reported miRNAs in coronavirus diseases and, 

also how they can be beneficial for combating this invisible enemy to protect the human race. 

This should be an active area for future research to conduct detailed in vitro and in vivo 

experimental procedures for the clinical translation of miRNAs into COVID-19 therapeutics. 

 

6. Expert opinion 

Since the first emergence of SARS-CoV-2 in the later part of December 2019, more than 18.2 

million people have been impacted globally with this viral infection. As of now, there is no FDA 

approved treatment modality available but to slow-down the spread of the pandemic and control 

the number of infected people, some agencies allowed repurposing of few drugs including 

hydroxychloroquine, chloroquine, remedesivir, and other HIV drugs under Emergency Use 

Authorization (EUA). Along with these, many other treatments are under investigation ranging 

from anti-viral drugs to plasma therapy and antibody drugs. As the preventative measures, many 

vaccine candidates are also being tested (13 under clinical trials and more than 100 in preclinical 

studies) (clinicaltrials.gov). In order to propose an adequately feasible treatment option for 

SARS-CoV-2, researchers should focus on understanding the components involving in the 

pathogenesis of the viral disease.  
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miRNAs have emerged as newer group of components playing a crucial role in the pathogenesis 

of many diseases including viral diseases with clinically relevant therapeutic applications. In this 

review, we have highlighted several miRNAs that have identified for SARS-CoV-2 using 

bioinformatic studies. These miRNAs are, however, subjected to further in vitro and in vivo 

research, but still provide essential information on their possible role in SARS-CoV-2 infection. 

As miRNAs regulate the expression of target genes (mRNA), changing the expression status of 

miRNAs by overexpressing or knocking them down, can result in desired therapeutic outcomes. 

Viral diseases can have dual functionality of miRNAs as there could be viral miRNAs and host 

cell miRNAs. Host cell miRNAs could either inhibit the viral genome or enhance the viral 

genome replication upon the interaction. Despite having these advantages of miRNA 

therapeutics, delivery of naked miRNAs is often associated with rapid degradation and non-

specific target effects which can be overcome by nanotechnology-based approach.    

The overall idea of developing nanoformulations of the SARS-CoV-2 related miRNAs is to 

deliver these miRNAs successfully and safely to the cells to exert their therapeutic effects. This 

review has proposed multifaceted targeting approach for SARS-CoV-2 utilizing miRNA 

nanotherapy. Activation of SARS-CoV-2 spike protein upon the cleavage by TMPRSS2 is the 

first event of viral infection which further leads the cleaved spike protein to get fused with ACE2 

membrane receptor of the host cells. Therefore, miRNAs that are specific to activation and 

binding of spike protein are of great therapeutic potential. Like other delivery systems, 

identification of suitable miRNA nanoformulations with predetermined loading efficacy, 

sustained release, and targeting characteristics, is highly warranted. In addition, miRNAs that 

could inhibit the viral replication in the host cell, could also be enveloped in the nanoparticles to 

suppress the viral load. 

 

Other than therapeutic purpose, nanoparticles-based miRNAs could also be used in the form of 

nano-vaccines for the prevention from SARS-CoV-2. Nano-vaccines have several benefits over 

traditional vaccines as they are specific for infection site and have minimal to no off-target 

effects. Additionally, nano-vaccines can be developed as nasal spray/drops. In case of SARS-

CoV-2 infection, nasal spray nano-vaccine appears to be a more reliable modality as it can 

directly activate the immune response in the respiratory tract including nasal passage as well as 
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the lungs which are the primary contraction sites for SARS-CoV-2 viral infection, this also 

indicates the direct and specific delivery of miRNAs in the targeted sites. It is important to 

develop a unique and multi-disciplinary team of pharmaceutical and nanomedicine experts, and 

basic and clinical scientists, for the effective clinical translation of miRNA nanoformulations. 

However, applying already existing nanomedicine technology has also revived the interest for 

effective implementation of miRNA delivery for COVID-19. Oral delivery of therapeutics is 

always an easy step towards developing the medicines [71]. In the case of oral delivery of 

miRNAs, miRNA availability is highly challenging due to the nucleic acid degradation in gastric 

environment. Therefore, developing formulations that are suitable and can be applied to oral 

delivery of miRNAs is highly sought. Literature has identified that chitosan [80], mannose 

modified chitosan [81], bovine milk derived exosomes [82], bovine lactoferrin [83], lipidic [84], 

and PLGA-based nanoformulations [85] are employed for effective oral delivery of miRNAs/ 

therapeutics. Hence, developing oral nanoformulation(s) of miRNAs is achievable and is highly 

recommended for its successful implementation into the clinic. 
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