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Abstract 

The coronavirus disease 2019 (COVID-19) is caused by a novel coronavirus known as 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is associated 

with several fatal cases worldwide. The rapid spread of this pathogen and the increasing 

number of cases highlight the urgent development of vaccines. Among the technologies 

available for vaccine development, DNA vaccination is a promising alternative to 

conventional vaccines. Since its discovery in the 1990s, it has been of great interest 

because of its ability to elicit both humoral and cellular immune responses while 

showing relevant advantages regarding producibility, stability, and storage. This review 

aimed to summarize the current knowledge and advancements on DNA vaccines against 

COVID-19, particularly those in clinical trials.  

Keywords: Immunization, DNA vaccine, Nucleic acid-based vaccines, Coronavirus, 

COVID-19.  
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1. Introduction 

In the second week of December 2019, patients with an atypical form of pneumonia 

were diagnosed in Wuhan, Hubei Province, China [1]. At this time, it was detected as a 

new coronavirus, initially named nCoV-2019. In mid-January, the genome of this 

pathogen was made public, with its precise definition as “severe acute respiratory 

syndrome coronavirus 2” (SARS-CoV-2), thus named “coronavirus disease 2019” 

(COVID-19). This virus has spread rapidly across mainland China and worldwide. On 

March 11, the World Health Organization declared a pandemic state to the whole world 

[2–5].  

Coronaviruses are a large family of viruses known to cause illnesses in different 

animals, ranging from the common cold to more severe diseases. As of this year, seven 

different coronaviruses from alpha and beta genera are known to infect and cause 

disease in humans. These include the betacoronaviruses that cause severe acute 

respiratory syndrome (SARS-CoV), the Middle East respiratory syndrome (MERS-

CoV) [3], and SARS-CoV-2, all of which were responsible for a relatively high number 

of cases with high mortality rates. As of mid-August 2020, COVID-19 has already been 

responsible for more than 20 million infections and 750 thousand deaths [2]. As 

transmission rates are shown to be higher than other coronaviruses, SARS-CoV-2 is 

considered a concern for public health, mainly because of the possibility of overloading 

intensive care units, thus causing health systems to collapse.  

Considering this upcoming threat, the majority of countries adopted measures to reduce 

the transmission rate, which reduced the burden of COVID-19, though causing a 

significant economic loss globally. Therefore, the search for a vaccine against SARS-

CoV-2 was the main topic of research in the world to help restabilize the normal pace 
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[6]. However, no coronavirus vaccine to prevent respiratory infections in humans has 

been licensed yet [7]. 

In this context, various groups have made remarkable advances in developing new 

vaccines in a very short time [8]. Traditional vaccine development methods, although 

extremely effective in combating highly contagious diseases such as measles, require a 

large number of active viruses during production and can even take a longer time for the 

development in case attenuated pathogens are needed. Thus, more advanced vaccine 

technologies, such as DNA, RNA, subunit, and virus‑ like particles, have been 

extensively tested [9]. The aim of this study was to elucidate the current knowledge and 

discuss the use of DNA vaccines against COVID-19.  

2. Vaccine development during the SARS-CoV-2 pandemic  

For human vaccine development, regulatory agencies of different countries have 

historically requested an increasing number of clinical studies with a large number of 

patients and complexity. These measures assure that the final vaccine product will be 

safe and effective for different population subgroups before licensure for commercial 

use. Typically, 10–15 years are required from conducting preclinical studies to 

obtaining vaccine licensure. The fastest approval, though, was the Ebola vaccine, which 

took five years [10].  

In brief, clinical tests in humans can be divided into four phases: phase 1, wherein the 

vaccine is given to the healthy volunteers, and its safety and dosing are determined; 

phase 2, wherein initial immune stimulation is evaluated, and safety is further explored 

in small numbers of healthy people; phase 3 wherein the vaccine efficacy in preventing 

the disease is determined after it is given to a large cohort; and phase 4 which is 

conducted after vaccine approval to guarantee its safety and study long-term effects 
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[11]. The necessity of these phases is unanimous in the vaccinology field. However, the 

time required for each of these steps needs to be better planned to fasten the process and 

obtain the approval of a vaccine during a pandemic situation. 

The vast majority of viral vaccines currently licensed for humans can be categorized as 

virus or protein based. The virus-based group consists of an inactivated or live-

attenuated virus, and even though these vaccines are more immunogenic, several 

limitations are associated with these approaches. In the case of SARS-CoV-2, large 

quantities of viruses need to be produced under biosafety level 3 conditions for an 

inactivated vaccine, and extensive safety testing is required to ensure they do not revert 

to infective [12]. In contrast, subunit vaccines such as those with purified proteins 

present higher safety and scalability than whole-pathogen vaccines. Nevertheless, they 

may show less immunogenicity and require multiple immunizations [13, 14]. 

The current life-threatening infectious diseases, such as influenza (H5N1 subtype), 

Zika, Ebola, and MERS-CoV, are driving the demand for new, faster, and effective 

vaccine platforms [15, 16]. Considering recent experiences from the SARS-CoV-2 

pandemic, next-generation platforms must allow having a vaccine formulation useful 

for clinical trials in less than 16 weeks from genome sequencing to application in 

humans. Furthermore, these technologies elicit consistent immune responses across 

different pathogens and are suitable for large-scale manufacturing even as a pathogen-

agnostic platform. Multiple approaches are still under development; however, the DNA- 

and RNA-based approaches are among those with the greatest potential for speeding up 

the production of effective vaccines when urgently needed [12, 17].  

On August 11, 2020, Russia was the first country to approve a vaccine against COVID-

19 named “Sputnik V,” formerly known as the “Gam-COVID-Vac,” which is based on 

a viral vector technology. However, the world scientific community has raised doubts 
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about its clinical trials to prove its safety and efficacy [11]. Although there is a 

consensus that developing a safe and effective vaccine against SARS-CoV-2 is crucial 

to end the COVID-19 pandemic, cautious measures are necessary to ensure that new 

vaccines are safe for the entire population [18]. In addition, efficacy and safety are not 

the only crucial criteria, as a vaccine candidate must also have scalable production. 

Thus, it is necessary to select an adequate vaccine platform for accelerating vaccine 

development.  

3. DNA vaccine 

Immunization with nucleic acids has received considerable attention in the field of new 

generation vaccines. The first proof of concept of a DNA vaccine was made in 1990 and 

involved the injection of RNA or DNA molecules, expressing chloramphenicol 

acetyltransferase, luciferase, and beta-galactosidase into mouse skeletal muscle, and the 

expression of reporter genes in vivo, which can be detected for up to two months after 

infection [19, 20]. In brief, DNA vaccine consists of delivering genes or fragments of it, 

encoding immunogenic antigens to the host’s cells by using DNA plasmids as a vector. 

This approach induces both humoral and cell-mediated immune responses efficiently 

[21, 22]. The vaccine formulation is made such that the genetic material is translocated 

to the host’s cell nucleus (Fig. 1). Once it reaches there, the mammalian promoter 

present in the vector structure is activated, triggering the transcription of the gene used 

for the vaccine through the host’s cellular machinery. The antigen-presenting cells 

(APCs) are the major target cells to receive the genetic material. In addition, myocytes 

have been reported to play a crucial role [19]. After the translation of the translocated 

gene into a protein or protein fragment, it is further processed into peptides that bind to 

major histocompatibility complex (MHC) class I or II. Cells other than APC, such as 

the myocytes, use MHC-I for the antigen presentation, and APC, such as dendritic cells 
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(DCs), can use MHC-II, resulting in cross-priming and presentation of antigens to both 

CD4+ and CD8+ T cells [23–26]. Regarding COVID-19 immune regulation, a recent 

study showed that at-risk patients with pericardial effusion with a worse prognosis show 

elevated CD3
+
CD8

+
 T cells together with reduced Tregs and CD14

+
HLA-DR

+
 

monocytes [26]. These findings show that the main course of the disease occurs because 

of a misbalance of the immune response, often leading to misregulation and worsening 

of the infection [27]. Thus, the vaccines in development against COVID-19 aim to build 

a proper and effective immune response without causing such misbalance. Of note, not 

only this cellular immune response can be activated, but also humoral responses can be 

triggered if the produced immunogen is released from the cells and recognized by B cell 

receptors [25]. 

In addition, intrinsic elements of plasmid DNA, such as CpG unmethylated sequences, 

can activate innate immune responses, thereby enhancing adaptive immune responses 

against the expressed antigens. Although clinical trials using DNA vaccines in humans 

induced both cellular and humoral responses, these responses are often not sufficient to 

elicit significant clinical benefits. Therefore, DNA vaccines have only been licensed for 

use in veterinary medicine [21, 24, 25]. Because of this limitation, several research lines 

focus on DNA vaccine optimization and delivery, including promoter design, codon 

optimization, adjuvants, use of electroporation, prime/boost immunization, or “omics” 

approaches for refined vaccine design [28].  

Compared with traditional live or attenuated vaccines, DNA vaccines have several 

advantages, such as induction of broad immune responses without any risk being 

associated with replicating microorganisms; stimulation of both cellular and humoral 

immunity; construction of a vector encoding different antigens in a single vaccine; 

efficient large-scale, low-cost, production; and high storage stability [21, 29]. In the 
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vaccinology field, storage is a crucial factor, as preserving the high quality of the 

vaccine contents and, thus, the protective potential is necessary. Hence, cold storage is 

essential to ensure the survival of live vaccines and preserve their content. On the other 

hand, DNA vaccines are highly stable and have less need for refrigeration, which may 

be highly practical for use in endemic areas [23]. 

4. SARS-CoV-2 

The SARS-CoV-2 has a single-stranded, positive-sense RNA genome with 

approximately 26-32 kilobases in size. This virus belongs to the family Coronaviridae 

(order Nidovirales). The Coronaviridae family contains four genera to include 

alphacoronavirus (alphaCoV), betacoronavirus (betaCoV), deltacoronavirus (deltaCoV), 

and gammacoronavirus (gammaCoV). Although bats and rodents are believed to be the 

reservoir for alphaCoV and betaCoV, it is less clear, which animals can be the reservoir 

for deltaCoV and gammaCoV [3, 30].  

Among the coronaviruses that infect humans, two betaCoV (HCoV-229E and HCoV-

HKU1) and two alphaCoV (HCoV-NL63 and HCoV-OC43) circulate among the 

population during the past few decades and were identified as causative agents of 

approximately one-third of the common colds [31]. It has been reported that betaCoV 

used 9-O-acetylsialic acids as a receptor and alphaCoV used host proteins, including 

polypyrimidine tract binding and hnRNP-A1 as receptors [31].  

In addition to these common cold viruses, the three CoVs responsible for high mortality 

rates in humans, i.e., MERS-CoV, SARS-CoV, and SARS-CoV-2, are from betaCoV 

genus. The genome sequencing of SARS-CoV-2 has shown an overall similarity of 98% 

with the bat CoV RaTG13 [32]. Moreover, SARS-CoV-2 can enter the host’s cells 

through different mechanisms, including an endosomal and nonendosomal entry 
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through the action of proteases. Currently, the main receptor for SARS-CoV-2 entry in 

humans is angiotensin-converting enzyme 2 (ACE2), which is also used by SARS-CoV 

[32–35]. 

Structurally, SARS-CoV-2 contains four structural proteins, including spike (S), 

envelope (E), membrane (M), and nucleocapsid (N). Moreover, these proteins share 

high sequence similarity to those from SARS-CoV and MERS-CoV [32]. Thus, the 

knowledge from SARS-CoV and MERS-CoV vaccines provides some insights and 

lessons concerning the development of SARS-CoV-2 vaccine design and thus helps in 

accelerating the development of new vaccines for COVID-19 [18]. Some successful 

DNA vaccines expressing S, M, and N proteins have been developed against SARS-

CoV. The obtained results confirmed the strong protective humoral and cellular immune 

responses in mice, macaques, and camels [36–40]. Furthermore, the first DNA vaccine 

candidate against MERS-CoV to enter clinical trials, named GLS-5300, was well 

tolerated with no vaccine-associated serious adverse events. Immune responses were 

dose-independent, detected in more than 85% of participants after two immunization 

regimens, and durable through one year of follow-up [41, 42].  

5. The immune response and COVID-19 

The immune system can be categorized into innate immunity (rapid and nonspecific 

response) and adaptive immunity (slow and specific response). The adaptive immunity 

can be further divided into cellular responses mainly characterized by T cell maturation 

and humoral responses characterized by B cell maturation. Considering this, vaccines 

are prepared to induce both arms of the adaptive immune system and stimulate a 

sufficient number of memory T and B cells. Furthermore, immunity can be divided into 

two types: active and passive. Active immunity refers to the process of exposing a 
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patient to an antigen to generate an adaptive immune response, and passive immunity 

refers to the transfer of antibodies from one individual to another [43].  

Moreover, passive immunity can occur naturally when maternal antibodies are 

transferred to the fetus through the placenta or from breast milk to the gut of the infant 

[43, 44]. Regarding immunity against COVID-19, it is still not completely clear, which 

responses occur in natural COVID-19, and if people who recover from COVID-19 

infection are protected from a second infection [45, 46]. 

SARS-CoV-2 is associated with a robust adaptive immune response of both T and B 

cells. In addition, both immunoglobulin (Ig)M and IgG antibodies are produced mainly 

against N and S proteins. The antibodies appear around the 10
th

 day of infection, and 

most patients seroconvert within three weeks. If reinfections occur, it would indicate 

that immune response against SARS-CoV-2 is not protective and, therefore, the use of 

vaccines could not be associated with protection [47]. 

On the other hand, SARS-CoV-2 antibodies are found to be protective, although 

it remains uncertain if a high level of circulating antibodies lasts for enough duration to 

avoid further infections. This question still cannot be properly answered, as SARS-

CoV-2 has been in the community only for the past few months. However, results 

obtained with other closely related coronaviruses, mainly SARS-CoV and MERS-CoV, 

showed robust, long-lasting T and B cell immune responses [48–50].  

6. DNA vaccine in clinical trials 

As of January 2020, the complete genome of SARS-CoV-2 was published. 

Understanding the genome structure of the virus is a critical step for the development of 

new vaccines [33, 51]. During infection, antibodies are raised mainly against both N 

and S proteins. The N protein covers the viral genome and is also involved in the release 
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of virus particles from cells. Whereas the S protein plays a significant role in 

pathogenesis by binding to the host cell through its receptor-binding domain and thus 

initiating the infection to the host cell [52]. The S protein has 1273 amino acid residues 

and can be divided into three subunits, S1, S2, and S2’, each having a different role 

during the adherence to the host cell [52]. 

The S1 subunit is involved in the attachment of virions to the host cell membrane by 

interacting with human ACE2, which initiates the infection process. Furthermore, 

during this process, the S protein undergoes conformational changes induced by its 

entry into the endosomes of the host’s cell. The S2 subunit acts as a fusion protein that 

helps in the union of the viral and host cell membranes [53, 54]. During the fusion 

process, the S2 protein appears in three consecutive conformational states: 1) prefusion 

(native state), 2) prehairpin (intermediate state), and 3) ensuing postfusion (hairpin 

state). Subsequently, surface proteases cleave S2. SARS-CoV-2 S protein has a furin 

site as an additional cleavage spot, which may be associated with the broader infectivity 

in comparison with SARS-CoV [55]. Understanding these dynamic conformation states 

that are associated with the mechanism of viral entry into the host cell membrane could 

lead to the development of effective therapeutics [32, 56].  

The S protein has been used as the antigen of all DNA vaccines currently being tested in 

clinical trials (Table 1). One of them, named AG0301-COVID19 (ClinicalTrials.gov 

number, NCT04463472), uses a two-immunization scheme, the first with a low dose 

(1.0 mg) and the second with a high dose (2.0 mg). Both injections are administered 

intramuscularly within a two-week interval. At present, healthy individuals aged 

between 20 and 65 years are being recruited to evaluate the immunogenicity of this 

vaccine. 
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The biotechnology company (Inovio Pharmaceuticals, Plymouth Meeting, PA, USA) 

has previously developed experimental vaccines against MERS-CoV (INO-4700) and is 

currently evaluating a DNA vaccine against COVID-19. A plasmid pGX9501 designed 

to encode the SARS-CoV-2 S protein has been evaluated as an antigen. The INO-4800 

vaccine induced both cellular and humoral immune responses that were observed within 

days following a single immunization in mice and guinea pigs during preclinical testing 

[57]. 

Therefore, the company started a phase 1, open-label study to evaluate the safety, 

tolerability, and immunogenicity of INO-4800. This vaccine is administered 

intradermally through electroporation [41, 57]. Moreover, a preliminary study showed 

that INO-4800 induced neutralizing antibodies that blocked the binding of SARS-CoV-

2 S protein to the host receptor ACE2 [57]. 

Electroporation uses short electrical pulses at the vaccine application site, resulting in an 

increased cell membrane permeability; improved absorption of the antigen; and, 

consequently, a more effective immune response [58]. Moreover, electroporation was 

associated with an enhancement of immune response by recruiting inflammatory cells 

and APCs to the application site [59].  

Vaccine vectors have several advantages: low cost, noninvasive administration, and 

high safety levels [60]. The bacTRL-Spike vaccine uses live, recombinant 

Bifidobacterium longum that contains synthetic plasmid DNA encoding the S protein of 

SARS-CoV-2. Bifidobacterium is a nonpathogenic anaerobic bacterium that is part of 

the human microbiota. In addition, it has been proposed that this bacterium improves 

the host’s endurance by increasing the immune response against viral infection [61].  

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 
 

 

Some strains of Bifidobacterium were tested as carriers of antigens for its use as a 

recombinant vaccine against hepatitis C virus, enterovirus, and cancer [60, 62, 63]. A 

clinical trial was designed to evaluate the safety and tolerability of orally immunized 

bacTRL-Spike vaccine in healthy adults. However, this study has not yet started 

recruiting, and the estimated completion date is December 31, 2021 (ClinicalTrials.gov 

number, NCT04334980). Moreover, the safety and immunogenicity of GX-19, another 

DNA vaccine against COVID-19 that uses intramuscular immunizations are already in 

clinical trials.  

7. mRNA vaccines: a fast and consistent strategy to control COVID-19 

Over the past decade, major technological innovation and research investment have 

enabled mRNA to become a promising therapeutic tool in the fields of vaccine 

development. At present, multiple mRNA vaccine platforms against infectious diseases 

and several types of cancer have demonstrated encouraging results in both animal 

models and humans. Moreover, the area of mRNA vaccine is very rapidly developing. 

The mRNA vaccine does not need to reach the cell nucleus like the DNA ones, which is 

one of the potential practical advantages [64]. Thus, the mode of application and 

effectiveness of mRNA vaccines may be increased [65]. In fact, several preclinical 

studies and human clinical trials are using mRNA technology, particularly during the 

SARS-CoV-2 pandemic [66, 67]. 

The mRNA-based vaccines comprise mRNA that encodes a protein antigen. Although 

RNA is known to be a relatively unstable molecule, novel vaccine designs were 

developed to improve its stability and protein translation efficiency, which enhanced 

immune response. The mRNA-1273 (Moderna Inc. Cambridge, MA, USA) was the first 

mRNA vaccine to be designed against COVID-19 and has achieved a time record of 63 

days from vaccine design to human trials. Phase 1 clinical trials in the USA were 
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already published, whereas phases 2 and 3 are either analyzing results or ongoing 

(ClinicalTrials.gov number, NCT04470427). This vaccine uses lipid nanoparticle 

(LNP)-encapsulated mRNA that encodes for a full-length, prefusion stabilized S protein 

of SARS-CoV-2 [68–70].  

Previous studies with similar formulations have demonstrated that the delivery of the 

mRNA vaccine has been optimized by using LNPs for intramuscular or intradermal 

administration [71, 72]. Data showed that mRNA-1273 induced both potent neutralizing 

antibody and CD8 T cell responses. In addition, it protected against SARS-CoV-2 

infection in the lungs and nose of mice without evidence of immunopathology [73, 74].  

The mRNA-1273 vaccine is currently in phase 3 clinical trial. A preliminary report 

published after phase 1 showed that the vaccine-induced anti–SARS-CoV-2 immune 

responses in 45 participants. Antibody responses were increased with a higher dose (250 

µg) after the first vaccination. Moreover, after the second vaccination, neutralizing 

antibodies were detected in all evaluated participants, with generally similar values to 

those in the upper half of the distribution of a panel of control convalescent serum 

specimens. Adverse events such as fatigue, chills, headache, myalgia, and pain at the 

injection site occurred in more than half of the participants. Moreover, systemic adverse 

events were more common after the second vaccination, particularly with the highest 

dose [73, 75]. Another mRNA vaccine, called CVnCoV (ClinicalTrials.gov number, 

NCT04515147), encoding the full-length S protein and formulated with LNPs is 

recruiting volunteers (as of August 2020).  

Another mRNA vaccine, the BNT162 (BioNTech, Mainz, Germany) is in advanced 

clinical trials and has four variants, namely, a1, b1, b2, and c2. It is another LNP mRNA 

vaccine that recently made the results of the phase 1/2 trial public but not yet peer 

reviewed [76]. In this study, only the BNT162b1 variant was tested in a prime-boost 
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regimen within 21 days in three different doses [77]. Similar to mRNA-1273, the 

adverse events were dose-dependent and only mild to moderate, while the immune 

response showed a high level of neutralizing antibodies. Overall, these data suggest the 

potential to develop DNA and mRNA vaccines that are easier to design and can quickly 

proceed into clinical trials, which will be helpful for pandemic states such as the one 

caused by COVID-19 [77].  

8. Nucleic acid-based vaccines and SARS-CoV-2  

Immunoinformatics is a branch of bioinformatics used to design vaccines against 

several infectious diseases [78–80]. This approach involves computational analysis of 

immunological data by predicting appropriate antigens, epitopes, carriers, and adjuvants 

for vaccine development. Therefore, immunoinformatics can reduce the time and cost of 

vaccines [81, 82]. Considering this, the design of novel multiepitope mRNA vaccines 

consisting of cytotoxic T lymphocyte, helper T lymphocyte, and linear B lymphocyte 

epitopes derived from SARS-CoV-2 S protein, as well as adjuvant highly immunogenic, 

have been analyzed [53, 81, 83–85].  

Furthermore, different DNA vaccine candidates expressing different forms of the 

SARS-CoV-2 S protein have been evaluated in 35 rhesus macaques. Vaccinated 

animals developed humoral and cellular immune responses, including neutralizing 

antibody titers that are comparable to those found in convalescent humans [86]. From a 

general perspective, although mRNA vaccines quickly advanced to clinical trials in 

humans, the majority of candidate DNA vaccines are currently in the preclinical stage.  

 

9. Considerations and challenges  
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COVID-19 is an unusual global health threat wherein the vaccine is needed 

immediately. Because of the high risk of collapsing healthcare systems in several 

countries, governments had to implement lockdown measures, including no 

international travel and other public containment measures in attempting to reduce the 

virus morbidity and mortality worldwide [87–89]. Although effective, these actions led 

to vast economic devastation. 

Until date, there is no effective drug to reduce the infection and pandemic burden [90, 

91]. However, exceptional efforts have been made in attempting to develop an effective 

and safe vaccine at the earliest, which should be available to all countries affected by 

the pandemic at an affordable price [92, 93]. Previous advancements made since the 

SARS and MERS outbreaks have accelerated our understanding of the epidemiology, 

pathogenesis, and diagnosis of SARS-CoV-2, as well as the development of therapies to 

treat viral infection and possible vaccines [68]. 

In this pandemic situation, it is crucial to ensure that rigorous and adequate clinical 

trials are performed to evaluate drugs with antiviral effects for avoiding the usage of 

ineffective and unsafe drugs [68]. Current clinical trials of candidate vaccines are 

undergoing phase 1 or parallel 1/2 studies to initiate phase 3 at the earliest and decrease 

the time required for the development of the new vaccine [74].  

Although advances in genetic sequencing and other technological developments have 

sped up the establishment of various vaccine platforms, several uncertainties still 

remain. Questions have arisen regarding the mutation rates of SARS-CoV-2, which 

could lead to immune evasion. Understanding mutations in the coding and non-coding 

regions, genetic diversity, pathogenicity, and host-pathogen interactions is essential. 

Mutations in the S protein seem to induce conformational changes, which may alter 

antigenicity and, thus, may affect the vaccine design [32, 94, 95]. Moreover, previous 
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studies suggested that various mutations in the target proteins of the coronaviruses can 

be associated with drug resistance and changes in the protein structures of target 

proteins that may lead to vaccine inefficacy [32].  

It is crucial to highlight that the uncertainty over long-lasting protection against 

COVID-19 still remains. Patients with reinfection have been reported, and it is 

necessary to determine how long a protective immune response can be maintained in an 

individual [96, 97]. Considering the immunogenicity of the SARS-CoV-2 mRNA-1273 

vaccine in older adults, it has been reported that after the second immunization, serum 

neutralizing activity was detected in all the participants, and binding and neutralizing 

antibody responses appeared to be similar to those described among vaccine recipients 

between the ages of 18 and 55 years and were above the median of a panel of control 

individuals who had donated convalescent serum [98]. Ideally, vaccination would 

induce long-lived immunity, but annual vaccination would be feasible based on 

experiences with the annual influenza vaccine [12]. 

In the current pandemic, several specialists have suggested that immune responses 

against SARS-CoV-2 could lead to antibody-dependent enhancement (ADE) [99]. 

Although this phenomenon has major importance for Flavivirus and some feline 

coronaviruses, SARS-CoV and SARS-CoV-2 have shown not to cause this effect in 

living animals or humans [100]. However, if ADE becomes crucial during the current 

pandemic, both DNA- and RNA-based platforms could quickly provide alternatives to 

circumvent such issues, as regions or motifs of the vaccine antigen responsible for 

causing ADE could be easily engineered or removed [101]. 

The great advantage of the current advancements in nucleic acid-based technologies for 

vaccine development is the short time required from the design to clinical trials. 

Therefore, it may be soon possible to test together, in the same vaccine, different 
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variants of antigens that cover circulating mutations. This would represent a major step 

forward in vaccine development against rapidly emerging threats such as the current 

SARS-CoV-2 pandemic. Therefore, developing vaccines against COVID-19 require 

further studies on gene mutations and how to avoid vaccine failure because of them.  
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Table 1. Overview of the ongoing clinical trials of nucleic acid vaccines against COVID-19 (assess at ClinicalTrials.gov as of November 02, 

2020). 

Study start date/ 

Study identifier 

Technology Study phase/ 

ECD 

Project title Immunogen Via Subjects Number 

of 

subjects 

Study 

location 

June 17, 

2020/NCT04445389 

DNA vaccine Phase 1–2 

June 2022 

 

Safety and Immunogenicity Study of GX-19, a 

COVID-19 Preventive DNA Vaccine in Healthy 

Adults 

S protein IM Adults (18 - 50 

years old) 

210 Korea 

July 29, 2020/ 

NCT04463472 

DNA vaccine Phase 1–2 

July 2021 

Study of COVID-19 DNA Vaccine (AG0301-

COVID19) 

S protein IM Adults (20 - 65 

years old) 

30 Japan 

August 31, 2020/ 

NCT04527081 

DNA vaccine Phase 1–2 

September 

2021 

 

Study of COVID-19 DNA Vaccine (AG0302-

COVID19) 

S protein IM Adults (20 - 65 

years old) 

30 Japan 

April 3, 2020/ 

NCT04336410 

DNA vaccine Phase 1 

July 2021 

Safety, Tolerability and Immunogenicity of 

INO-4800 for COVID-19 in Healthy Volunteers 

S protein ID 

(EP) 

Adults (18 

years and older) 

120 United 

States 

July 2020/ 

NCT04334980 

DNA vaccine
a
  Phase 1/ 

February 2022 

Evaluating the Safety, Tolerability and 

Immunogenicity of bacTRL-Spike Vaccine for 

Prevention of COVID-19 

S protein oral Adults (18 

years and older) 

12 Australia 

November 2020/ 

NCT04591184 

DNA vaccine Phase 1 

June 2021 

A Clinical Trial of a Plasmid DNA Vaccine for 

COVID-19 [Covigenix VAX-001] in Adults 

S protein IM Adults (18 to 84 

years old) 

72 Canada 

March 16, 2020/ 

NCT04470427 

mRNA 

vaccine
b
 

Phase 3 

October 2022 

Safety and Immunogenicity Study of 2019-

nCoV Vaccine (mRNA-1273) for Prophylaxis 

of SARS-CoV-2 Infection (COVID-19) 

S protein IM Adults (18 

years to 99 

Years old) 

30,000 United 

States 

June 18, 2020/ 

NCT04515147 

mRNA 

vaccine 

Phase 2 

November 

2021 

A Study to Evaluate the Safety, Reactogenicity 

and Immunogenicity of Vaccine CVnCoV in 

Healthy Adults 

S protein IM Adults (18 - 60 

years old) 

691 Germany 

April 23, 2020 

NCT04368728 

 mRNA 

Vaccine
b 

Phase 2–3 

December 

2022 

A Trial Investigating the Safety and Effects of 

Four BNT162 Vaccines Against COVID-2019 

in Healthy Adults 

S protein IM Adults (18–85 

years old) 

29,481 Germany 

January 2021 

NCT04566276 

mRNA 

vaccine
b 

Phase 1 

June 2021 

ChulaCov19 mRNA Vaccine in Healthy Adults S protein IM Adults (18–75 

years old) 

96 Thailand 
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ECD, Estimated Study Completion Date; IM, intramuscular; EP, electroporation; ID, intradermal. 
a
Bifidiobacterium longum, 

b
Lipid nanoparticle-encapsulated 

mRNA.  
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Figure legend  

Fig 1. Induction of cellular and humoral immunity after immunization with DNA 

vaccines. A DNA vaccine consists of a plasmid produced in bacteria that encodes the 

protein of interest (an antigen) in the presence of a mammalian promoter. It is placed in 

a way that it reaches the cell nucleus, enabling the transcription and translation in the 

transfected human cells (step 1). After the plasmid uptake in vivo, the encoded protein is 

expressed in the host’s cells, and the vaccine antigen can be then presented to antigen-

presenting cells (APCs), such as dendritic cells (DCs), through the major 

histocompatibility complex (MHC) pathways and be presented to activate naïve T cells. 

CD8+ T cell immunity is predominantly activated by endogenously expressed antigens 

presented on MHC class I molecules (step 2a). The active CD8+ T cell stimulates the 

release of cytokines (e.g., interferon-gamma [IFN-γ] and tumor necrosis factor-alpha 

[TNF-α]) that inhibit viral replication and increase the expression of MHC I molecules. 

Therefore, macrophages are also activated to support cell-mediated immune responses 

(step 2b). However, CD4+ T helper cell activation is triggered through MHC class II 

from APC (step 3). In case the vaccine proteins are secreted, these targets are 

recognized by B cell receptors in naïve B cells, which also use MHC-II to get activated 

(step 4). In this immune pathway, activated B cells will produce different classes of 

antibodies (mainly IgG) to protect against the disease (step 5). Furthermore, 

immunization with DNA vaccine expresses proinflammatory cytokines and 

chemokines. DCs are responsible for producing IL-10, IL-12, and TNF-α that induce the 

cellular response by activating CD8+ T and IL-4 is involved in activating CD4+ T. 
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Graphical abstract 

 

 

Highlights 

 Explanation about the functionality and effectiveness of DNA vaccines in 

pandemic scenarios; 

 Summary of DNA vaccines in clinical trials, and nucleic acid vaccines against 

COVID-19; 

 Perspectives on the improvement of DNA vaccines as safe and cheap technology 

for prevention. 
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